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Abstract We study the equilibrium spin configuration of the ZD Hubbard model for a low 
degree of doping, x, when a long-range magnetic order is still present. We show that the 
conventional planar spiral phase~has negative bosonic modes and is therefore unstable. The 
novel equilibrium state that we find at low doping is incommensurate and non-coplmnr with 
the inverse pitch of the spiral varying as &, nevenheless this state has a dominant peak in the 
susceptibility at (n, n). 

Magnetic properties of the CuOz layers in the high-temperature superconductors have 
recently been attracting intense interest, as magnetism is possibly a major contributor to 
the mechanism of superconductivity [l]. There are numerous reasons for believing that the 
low-energy properties of cuprates are quantitatively captured by the 2D Hubbard model 

7-1 = -Cti,ja:,,aj,a + U C n ; . + n i , i .  (0 
i . j  i 

Here 01 is a spin index, n = uta, and ti.j is a hopping integral, which we assume to act 
only between nearest neighbours. According to numerical calculations, making this last 
assumption is more justified for Laz,Sr,CuO4 than for YBaLCusOs+,. 

At half-filling, the ground state of the ZD Hubbard model exhibits a long-range 
commensurate N k l  order. Shraimin and Siggia first pointed out [2] that holes introduced 
into a commensurate antiferromagnet give rise to a long-range dipolar distortion of the 
staggered magnetization. In their mean-field scenario, this~leads to a spiral spin configuration 
with the momentum (n, Q ) .  The incommensurate (n, Q) phase was also obtained in the 
early perturbative studies of the Hubbard model with small U 131 and in several other 
mean-field [4, 51 and self-consistent [61 calculations. 

In this communication we use the spin-density-wave (SDW) approach and study the 
structure of magnetic correlations in the Hubbard model at small but finite doping when 
long-range magnetic order is still present. We will show that the (n. Q )  spiral state is 
actually unstable, and find an equilibrium state which will be not only incommensurate 
but also non-coplanar in the spin space. This in turn leads to a novel scenario of spin 
reorientation upon doping. 

As an input for our analysis, we will need an expression for the energy spectrum, 
Ek, of a single hole in a quantum antiferromagnet. The mean-field theory gives [71 

Ek = -e, where.62 = -2t(cosk, +cask,), t is the nearest-neighbour hopping, 
and A is a gap which separates valence and conduction bands [4, 8, 7, 91. This energy 
is obviously degenerate along the whole edge of the magnetic Brillouin zone. However, 
both perturbative [lo] and variational [ I l l  studies have shown that this degeneracy does 
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not survive the effects of quantum fluctuations, and the actual dispersion has a maximum 
at four points (1x/2, &x/2). In the neighbourhood of these points E k  can be presented 
as E k  = -A + pi/2m\l + p i / 2 m ~  (near (x/2, x/2), we have p11 = (kx - ky)/2. PI. = 
(kx + ky)/2). Self-consistent calculations predict that at large U, both masses scale as 
the inverse bandwidth J = 4tZ/U but numerically, m! is several times larger than m l .  
Notice, however, that the mass anisotropy is present only in the nearest-neighbour model: 
a negative second-neighbour hopping t' yields pockets at (x/2, n/2) even in the mean-field 
approximation, and the two masses become equal for t' - J/2 << t. 

We now turn to the description of our calculations. Consider first a Nkel-ordered state 
for a small but finite degree of doping. Near Q.0 = (a, x). the static transverse susceptibility 
should have a hydrodynamic form [I21 xF(q 90) = N t / ( p s ( q  - Qo)'), where NO is 
the on-site magnetization, and ps is the spin stiffness. This form of transverse susceptibility 
is reproduced in the SDW formalism by summing the ladder series of bubble diagrams. At 
half-filling, only bubbles containing valence and conduction fermions are allowed, while for 
a finite degree of doping one also has contributions to x from bubbles with only valence 
fermions as chemical potential moves inside the valence band. These last contributions 
are proportional to the Pauli susceptibility, which in two dimensions does not depend on 
carrier concentration. As a result, we obtain a finite correction to the spin stiffness even 
for a very small degree of doping IS]: ps = p,"(I - z), where p," is the spin stiffness for 
half filling, and z = 4Tx$Cli = 2 T m / n  where T is the effective interaction between 
two holes. In a systematic perturbative expansion around the mean-field state (which holds 
for the inverse number of orbitals n = 2S, and yields antiferromagnet with spin S), this 
interaction is of the order of U and therefore z > 1. However, for physical S = 1/2, the 
perturbative approach is irrelevant because of the strong self-energy and vertex corrections 
which contribute powers of U / t S .  Self-consistent calculations for S = l /2 have shown 
that these corrections reduce T to the order of the bandwidth J [Z, 8, 131, which in turn 
implies that z is simply a number, independent of U / t .  For these reasons, for the rest of 
this work, we will consider z as a phenomenological input parameter 1141. 

It follows from stiffness considerations that the Nkel state remains stable for a finite 
degree of doping if z c 1, but becomes unstable if z > 1 in which case we have to consider 
incommensurate spin configurations as possible candidates for the ground states. Let us first 
focus on the two simplest candidates [2, 6, 151: the spiral states with the ordering vectors 
(x, Q) and (Q, Q). For definiteness, we choose the ordering to be in the XY-plane such 
that S i  = So cos(QR), and S i  = SG sin(QR), where Q is the ordering momentum. 

The mean-field analysis for the incommensurate states proceeds in the same way as 
for the Nkel state: one has to introduce a singleparticle condensate, decouple a Hubbard 
term and diagonalize the quadratic form. Performing the calculations, we find that only two 
pockets, at ( fxj2,  n/2), are actually occupied in the (x, Q) state, and that Q = n -(U/+ 
and E@*o) - E(r+) = nx2(1 - z)/(4-. Clearly, the (x, Q) phase has lower energy 
than the (x, x) phase for z > 1, exactly where the stiffness of the (x. x) state becomes 
negative. 

For the (Q. Q) phase, the inverse pitch Q is the same, but only one hole pocket, 
at (x/Z,x/2), is occupied, and the energy difference is E@.Q) - = axZ(3 - 
2z)/(4,,'ZiZ$. Comparing the two expressions for energy, we observe that the spiral 
(n, Q) phase has the lowest energy at 1 < z < 2. This is consistent with the results 
from other mean-field approaches [2, 51. For z > 2, the (Q, Q) state has the lowest 
energy. However, we found that aE'e ,e ) /axz  - (1 - z/2) is negative for z > 2. This 
suggests that a phase-separated solution will have lower energy than the homogeneous 
state [16]. In contrast, for 1 < z < 2, where mean-field considerations favour a (x, Q) 
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spiral, aE'Q,Q)/ax2 z 0, i.e. the system is stable towards phase separation. In view of this, 
we will only consider the case 1 e z < 2. 

We now turn to the central topic of our work, which is the stability analysis of the spiral 
phases. Stability requires that the static bosonic susceptibility is positive everywhere except 
for at three points in momentum space where x-' is~zero due to the breakdown of SO(3) 
symmetry. The calculation of the~susceptibilities in the SDW approach is straightforward 
but lengthy because we have to solve a set of four coupled equations (three for spin- 
spin correlators and one for the density-density correlator). A similar analysis for the 
Hubbard model on a triangular lattice is presented in [17]. For in-plane (longitudinal) 
spin fluctuations, a simple symmetry analysis predicts that the zero modes are located at 
q = rQ (n, Q) for x:- and xi+ correspondingly. We have performed calculations and 
indeed found that near the pole, static x:- behaves as x:- = 2[J(q  + Q)'(2 - z)J-', i.e., 
it is positive for z c 2 which means that the (n. Q) phase is stable with respect to phase 
separation [18]. Note in passing that for the dynamical susceptibility, we found a pole at 
w = clq + QI with the same c (up to O ( x )  terms) as at half filling. This is in agreement 
with other results [19, 151. 

We now consider magnetic susceptibility xg;' associated with the fluctuations of the 
plane of spin ordering. These fluctuations are coupled to the charge and in-plane spin 
fluctuations only dynamically, so for the full static susceptibility one has the simple RPA- 
Iike formula x;(w = 0) = %'(o = 0)/(1 - w ; ( m  = 0)) where is the bare bubble. 
From general symmetry considerations, we would expect the Goldstone modes in x: to be 
at q = kQ. Performing calculations to the lowest non-trivial order in the density (i.e. to 
O(xz)), we have, indeed, found that (X?)-' at q = iQ is equal to zero. However, with 
the same accuracy, we also find that the stiffness for excitations near these momenta is 
equal to zero! Moreover, to O(x2), all fluctuation modes between Q and -Q, including the 
mode at (r, z), turn out to be gapless. A similar degeneracy was found in the macroscopic 
consideration by Shraiman and Siggia [19]. This degeneracy is not related to any kind of 
broken symmetry and is only an artifact of the lowest order in the expansion in hole density. 
At the same time, the divergence of the static susceptibility in a finite range of momenta 
implies that there are an infinite number of spin configurations which to the lowest order in 
the hole density are degenerate with the (n, Q) state. 

a) b) 
Figure 1. (a) Tbe spin confiprarion of a non-coplanar Rate. Arrows with thick heads point 
out of the plane, while those with thick tails point into the plane. This configuration is different 
from the double spiral considered by Chakraborry et nl [SI. (b) Two adjacent spins in the 
equilibrium configuration. The in-plane component, SL - X'D, is small compared with the 
off-plane component, SI,. 

To specify this set of states, we observe that zero modes in xL2  are centred around 
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(n, n). The zero mode in the transverse susceptibility at (E ,  n) means that the system is 
indifferent to generation of a spontaneous commensurate antiferromagnetic order along the 
2-direction in addition to the incommensurate spin ordering in the XY-plane. Accordingly, 
we introduce two different SDW order parameters, A ,  = U ( S I )  and All = U ( S I I ) ,  where 
(SI) and (SI,) are the magnitudes of the off-plane and in-plane components of the on-site 
magnetization, respectively. Notice that the states with both All and A I  finite are non- 
coplanar (see figure 1). The inverse pitch of the spiral in the XY-plane is related to A I  by 
the requirement that the two SDW self-consistency conditions for two order parameters be 
compatible with each other. Solving the self-consistency equations, we obtain ( q ~  = ~ n  - Q) 
qQ = (U/ t ) (A/Al l )x  = O(x2) where A' = A:+4; is thetotal order parameter constrained 
by the self-consistency conditions to be A % U/2.  We then evaluate the ground-state energy 
of non-coplanar states and find that to order x z ,  it does not depend on A L .  In other words, 
all non-coplanar states with finite A I  are degenerate in energy with the (n, Q) spiral and 
therefore belong to a set of degenerate ground states. 

As we have already discussed, the degeneracy found so far is not related to any kind of 
broken symmetry and must be lifted due to higher-order terms in the hole density. However, 
it seems impossible to predict in advance which configuration (planar spiral or some other) 
will be the true ground state. We therefore perform calculations of the ground-state energy 
to next-to-leading order in x ,  and find after some tedious algebra that when A I  and All are 
both of the order of U, 

where AE = EA, - EA,+o. and EA,+ is the ground-state energy in the limit when the 
Z-component of the order parameter tends to zero 1201. It is apparent from (2) that the 
energy decreases as the ratio Al/Ali  increases-that is, the (n, Q) spiral phase corresponds 
to a maximum rather than minimum of energy. 

As an independent check that the planar (n, Q) phase is unstable, we also calculate the 
static susceptibility p ( q )  in this state beyond the leading order in the hole density and 
after some algebra obtain along qx = x 

where @ = n - qy, and qQ = n - Q. We see that while the Goldstone mode at = f q Q  
survives to O(x3) (as it should), the static susceptibility for out-of-plane fluctuations at and 
near (x ,  n) is negative for z < 2. This implies that the spiral (n, Q) state is unstable at 
low doping which is entirely consistent with energy considerations. Notice that the RHS of 
(2) contains the same positive fact- x3((2/2) - 1) as the expression for x L Z  at (n, n). Also 
note that all O(x3) terms in (2) and (3) come from the integration within the hole pockets 
(the bubbles with conduction and valence fermions yield regular corrections in powers of 
xz) .  Near the minima, the hole spectrum has a quadratic dispersion for an arbitrary form 
of the hopping intezral, and we therefore expect our result for the instability of the (x ,  Q) 
phase to be valid also for the models with more complex hole dispersion, the only necessary 
condition being the existence of hole pockets around (&n/2, &z/2). 

We now turn to the issue of what is the actual equilibrium state at finite doping. We 
see from equation (2) that the ground-state energy decleases as AE - - x 3 / A #  when one 
moves away from planar spiral. However, as we have already mentioned, this equation 
holds as long as All remains of the order of U .  For smaller All, particularly when All and 

. 
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qQ - xA11 both become of the order of f i , equation (2) and the self-consistency condition 
on have more complex forms. In this region, we find 

A E = -  [ 1 + (a’ + 2)b’ - a f iz  ( + y2 - a3)] 
2 (4) 

where we introduced All = ryAx’/’, qQ = p’(U/Z)x’/’. The self-consistency condition on 
relates a and p as follows: f i  = z ( q “  - a)/2. Substituting this relation into (4) 

and minimizing AE with respect to a, we obtain the equilibrium values of e, p’ and A E .  
To the lowest order in 2 - z they are: a G J7z/(12(2 - z)), @ X l/a and 

As expected. AI3 is negative which implies that equilibrium state has smaller energy than 
the (n, Q) spiral. Also observe that because in equilibrium All - ,,G, A E  in fact scales as 
i2, instead of x3, which in turn implies that this state in principle could be selected even 
without considering a degenerate set of states. However, the discovery of the instability of 
the planar spiral state has given us a hint of where to search for the equilibrium state. 

Consider next the magnetic susceptibility in the equilibrium state. By virtue of being 
an energy minimum, it is indeed positive, diverging only at the Goldstone points. The 
peculiar thing is that the order parameter now has two components, an XY-component with 
momentum Q E (K, Q) and the 2-component with momentum x E (K, n). As a result, 
the in-plane (XY) spin susceptibility will have hvo static zero modes at these points. We 
can therefore approximate x: via 

where the residues xn and XQ are proportional to A I  and Ai respectively. Now observe 
that because A,, - fi, the residue of the pole at the incommensurate wave vector q = -Q 
is proportional to the hole concentration, and is suppressed with respect to the pole at the 
commensurate wave vector (n, n). This implies that as long as long-range order is present, 
the in-plane spin susceptibility remains peaked at (n. n) even when the commensurate phase 
is unstable. For xF> however, simple symmeky considerations show that zero modes are 
located at q = &a. 

The above~results lead to a novel scenario of spin reorientation with doping. In the. 
Shraiman-Siggia picture, spins remain in the same plane as at half-filling, .but for z > 1, 
they are twisted into a spiral with incommensurate momentum (n, Q). In our scenario, 
the commensurate antiferromagnetic ordering (the same as at half-filling) does not vanish 
when z > 1. and doping only introduces a transverse component of the order parameter 
which forms a spiral in the plane perpendicular to the direction of commensurate order. 
This transverse component is small for small x, and the low-T behaviour at finite doping 
remains nearly the same as in the commensurate antiferromagnet [21, 221. Notice, however, 
that our our analysis has been performed only for frequencies smaller than the energy scale 
A E  associated with the lifting of the degeneracy. At larger frequencies, the static selection 
is irrelevant, and one has to solve the full dynamical problem which at the moment seems 
rather difficult to do. 

The analysis above is valid for the magnetically ordered phase. We therefore cannot 
pretend to resolve the well-known discrepancy between neutron scattering and NMR 
experiments for Laz-,Sr,Cu04 [23, 241, which have both been performed well inside the 
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metallic phase. Notice in this regard that, as neutron data indicate, incommensurability at 
(n, &) observed at 7.5% and 14% doping is not correlated with the magnetic behaviour 
in the ordered phase. This implies that our results are not in conflict with neutron data. 
At the same time, no incommensurability has been found in neutron experiments in the 
magnetically ordered phases of Y I23 and electron-doped compounds. 
It is our pleasure to thank A Abanov, V Barzykin, R Joynt, D Pines, S Sachdev and A Sokol 
for useful discussions. The work was supported by the University of Wisconsin-Madison 
Graduate School and the Electric Power Research Institute. 
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